Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Characterization of VdASP F2 Secretory Factor from Verticillium dahliae by a Fast and Easy Gene Knockout System.

The vascular wilt fungus Verticillium dahliae produces persistent resting structures known as microsclerotia, which enable long-term survival of this plant pathogen in soil. The completed genome sequence of V. dahliae has facilitated large-scale investigations of individual gene functions using gene-disruption strategies based on Agrobacterium tumefaciens-mediated transformation. However, the construction of gene-deletion vectors and screening of deletion mutants have remained challenging in V. dahliae. In this study, we developed a fast and easy gene knockout system for V. dahliae using ligation-independent cloning and fluorescent screening. We identified secretory factor VdASP F2 in a T-DNA insertion library of V. dahliae and deleted the VdASP F2 gene using the developed knockout system. Phenotypic analysis suggests that VdASP F2 is not necessary for V. dahliae growth on potato dextrose agar under various stress conditions. However, on semisynthetic medium or under limited nutrient conditions at lower temperatures, the VdASP F2 deletion mutant exhibited vigorous mycelium growth, less branching, and a significant delay in melanized microsclerotial formation. Further assessment revealed that VdASP F2 was required for the expression of VDH1 and VMK1, two genes involved in microsclerotial formation. Cotton inoculated with the VdASP F2 deletion mutant wilted, demonstrating that VdASP F2 is not associated with pathogenicity under normal conditions. However, after inducing microsclerotial formation and incubation at low temperatures, cotton infected with the VdASP F2 deletion mutant did not exhibit wilt symptoms. In conclusion, our results show that VdASP F2 plays an important role in the response of V. dahliae to adverse environmental conditions and is involved in a transition to a dormant form for prolonged survival.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app