Add like
Add dislike
Add to saved papers

Computational study of cell adhesion and rolling in flow channel by meshfree method.

Tethering and rolling of circulating leukocytes on the surface of endothelium are critical steps during an inflammatory response. A soft solid cell model was proposed to study monocytes tethering and rolling behaviors on substrate surface in shear flow. The interactions between monocytes and micro-channel surface were modeled by a coarse-grained molecular adhesive potential. The computational model was implemented in a Lagrange-type meshfree Galerkin formulation to investigate the monocyte tethering and rolling process with different flow rates. From the simulation results, it was found that the flow rate has profound effects on the rolling velocity, contact area and effective stress of monocytes. As the flow rate increased, the rolling velocity would increase linearly, whereas the contact area and average effective stress in monocyte showed nonlinear increase.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app