Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Tumor Necrosis Factor Alpha Overexpression Induces Mainly Osteoclastogenesis at the Vertebral Site.

Syndesmophyte occurrence and axial bone loss were investigated in the heterozygous Tg187 tumor necrosis factor (TNF) transgenic mouse model (Tg-huTNF) of arthritis. Female and male Tg-huTNF mice were compared to wild-type mice (WT) at 2, 4, 6, 8, and 10 weeks. Syndesmophytes, intervertebral disc space, osteoclasts, osteoid surface, and vertebra microarchitecture were assessed by histomorphometry and microcomputed tomography. No spontaneous syndesmophyte formation was detected in Tg-huTNF compared to WT mice. However, increased porosity was observed mainly in peridiscal lumbar vertebra. Accordingly, bone microarchitecture parameters were altered in Tg-huTNF mice, with decrease in bone volume fraction, and trabecular number and thickness after 6 weeks compared to WT (p < 0.05). Osteoclast count and surface were increased (p < 0.01). Moreover, the non-mineralized (osteoid) surface was also increased in Tg-huTNF after 6 weeks (p < 0.01). Despite increased osteoclast and osteoid surfaces, an imbalance between both was observed in favour of osteoid surface at the early phase and then to osteoclast surface. These results demonstrated an axial bone loss in the Tg-huTNF model, additional to the common limb arthritis, related to overexpression of TNF. However, the absence of syndesmophyte and the increase of osteoid surface suggested that chronic inflammation might block bone mineralisation. Finally, the relative increased osteoid surface was not enough to compensate the high osteoclast activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app