Add like
Add dislike
Add to saved papers

High-efficient acetate production from carbon dioxide using a bioanode microbial electrosynthesis system with bipolar membrane.

The aim of this study was to develop an efficient bioanode microbial electrosynthesis system (MES) to convert carbon dioxide into acetate using bioenergy from the wastewater. The bioanode MESs were constructed using proton exchange membrane (PEM) and bipolar membrane (BPM) as separator, respectively, and operated under different voltages (i.e., 0.8, 1.0, 1.2, and 1.4V). Since BPM could dissociate H2O into H(+) and OH(-) in situ to buffer the pH change in the chambers, the BPM-MES achieved 238% improvement in cathodic acetate production rate, 45% increase in anodic substrate removal efficiency, and more than five times enhancement in current output, as compared to the PEM-MES. The biomass on the surface of anode and cathode, and the relative abundance of Acetobacterium in the cathode of BPM-MES was higher than that in PEM-MES. Bioanode MES with BPM should be a useful microbial electrosynthesis strategy for acetate production using bioenergy from wastewater treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app