Add like
Add dislike
Add to saved papers

Predicting Risk of Type 2 Diabetes by Using Data on Easy-to-Measure Risk Factors.

INTRODUCTION: Statistical models for assessing risk of type 2 diabetes are usually additive with linear terms that use non-nationally representative data. The objective of this study was to use nationally representative data on diabetes risk factors and spline regression models to determine the ability of models with nonlinear and interaction terms to assess the risk of type 2 diabetes.

METHODS: We used 4 waves of data (2005-2006 to 2011-2012) on adults aged 20 or older from the National Health and Nutrition Examination Survey (n = 5,471) and multivariate adaptive regression splines (MARS) to build risk models in 2015. MARS allowed for interactions among 17 noninvasively measured risk factors for type 2 diabetes.

RESULTS: A key risk factor for type 2 diabetes was increasing age, especially for those older than 69, followed by a family history of diabetes, with diminished risk among individuals younger than 45. Above age 69, other risk factors superseded age, including systolic and diastolic blood pressure. The additive MARS model with nonlinear terms had an area under curve (AUC) receiver operating characteristic of 0.847, whereas the 2-way interaction MARS model had an AUC of 0.851, a slight improvement. Both models had an 87% accuracy in classifying diabetes status.

CONCLUSION: Statistical models of type 2 diabetes risk should allow for nonlinear associations; incorporation of interaction terms into the MARS model improved its performance slightly. Robust statistical manipulation of risk factors commonly measured noninvasively in clinical settings might provide useful estimates of type 2 diabetes risk.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app