Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Collagen-PVA aligned nanofiber on collagen sponge as bi-layered scaffold for surface cartilage repair.

Researchers have made bi-layered scaffolds but mostly for osteochondral repairs. The anatomic structure of human cartilage has different zones and that each has varying matrix morphology and mechanical properties is often overlooked. Two bi-layered collagen-based composites were made to replicate the superficial and transitional zones of an articular cartilage. Aligned and random collagen-PVA nanofibers were electrospun onto a freeze-dried collagen sponge to make the aligned and random composites, respectively. The morphology, swelling ratio, degradation and tensile properties of the two composites were examined. Primary porcine chondrocytes were cultured on the composites for three weeks and their proliferation and secretion of glycosaminoglycan (GAG) and type II collagen were measured. The influences of the cell culture on the tensile properties of the composites were studied. The nanofiber layer remained adhered to the sponge after three weeks of cell culture. Both composites lost 30-35% of their total weight in a saline buffer after three weeks. The tensile strength and Young's modulus of both composites increased after three weeks of chondrocyte culture (p < 0.05). The aligned composite with extracellular matrix deposition had a Young's modulus (0.35 MPa) similar to that of articular cartilage reported in literature (0.36-0.8 MPa). The chondrocytes on both aligned and random composites proliferated and secreted similar amounts of GAG and type II collagen. They were seen embedded in lacunae after three weeks. The aligned composite may be more suitable for articular cartilage repair because of the higher tensile strength from the aligned nanofibers on the surface that can better resist wear.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app