Add like
Add dislike
Add to saved papers

Development of Xanthophyllomyces dendrorhous as a production system for the colorless carotene phytoene.

Phytoene is a colorless carotenoid with increasing economic potential for skin care but with limited availability. The red yeast Xanthophyllomyces dendrorhous which has previously been used as a production platform for carotenoids was engineered as a prototype for the yield of this carotene. Phytoene was accumulated by prevention of its metabolization by desaturation in the carotenoid pathway. In a first step, the phytoene desaturase gene crtI was disrupted by insertion of a hygromycin-resistance gene. Most of the resulting transformants were heterozygote for intact and inactivated crtI. Upon re-cultivation of this orange transformants under selection pressure, white colonies homozygote for disrupted crtI were obtained. In contrast to reddish wild-type, the orange transformants contained colored carotenoids together with phytoene whereas the homozygote transformant synthesized phytoene exclusively. This targeted mutagenesis approach was first tested with the wild type and then applied to a high-yield carotenoid synthesizing X. dendrorhous mutant. In a second step, precursor supply for phytoene synthesis was enhanced by over-expression of the genes HMGR, crtE and crtYB which encode limiting enzymes of the pathway. The combination of this engineering approaches resulted in a phytoene producing X. dendrorhous strain which accumulated 7.5mg/g dw in shaking cultures. Finally, experimental small scale fermenter studies demonstrated continuous growth of this strain during fermentation and stable phytoene production without selection pressure. This fermenter culture contained the highest phytoene content ever reached by any organism with more than 10mg/g dw.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app