Add like
Add dislike
Add to saved papers

Muscle oxygen saturation increases during head-up tilt-induced (pre)syncope.

Acta Physiologica 2017 September
AIM: To evaluate whether muscle vasodilatation plays a role for hypotension developed during central hypovolaemia, muscle oxygenation (Sm O2 ) was examined during (pre)syncope induced by head-up tilt (HUT). Skin blood flow (SkBF) and oxygenation (Sskin O2 ) were determined because evaluation of Sm O2 may be affected by superficial tissue oxygenation. Furthermore, we evaluated cerebral oxygenation (Sc O2 ) and middle cerebral artery mean blood flow velocity (MCAvmean ).

METHODS: Twenty healthy male volunteers (median age 24 years; range 19-38) were subjected to passive 50° HUT for 1 h or until (pre)syncope. Sc O2 and Sm O2 (near-infrared spectroscopy), MCAvmean (transcranial Doppler) along with mean arterial pressure (MAP), heart rate (HR), stroke volume (SV), cardiac output (CO) and total peripheral resistance (TPR) (Modelflow® ) were determined.

RESULTS: (Pre)syncopal symptoms appeared in 17 subjects after 11 min (median; range 2-34) accompanied by a decrease in MAP, SV, CO and TPR, while HR remained elevated. During (pre)syncope, Sc O2 decreased [73% (71-76; mean and 95% CI) to 68% (65-71), P < 0.0001] along with MCAvmean [40 (37-43) to 32 (29-35) cm s-1 , P < 0.0001]. In contrast, Sm O2 increased [63 (56-69)% to 71% (65-78), P < 0.0001], while Sskin O2 [64% (58-69) to 53% (47-58), P < 0.0001] and SkBF [71 (44-98) compared to a baseline of 99 (72-125) units, P = 0.020] were reduced.

CONCLUSION: We confirm that the decrease in MAP during HUT is associated with a reduction in indices of cerebral perfusion. (Pre)syncope was associated with an increase in Sm O2 despite reduced Sskin O2 and SkBF, supporting that muscle vasodilation plays an important role in the circulatory events leading to hypotension during HUT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app