Journal Article
Review
Add like
Add dislike
Add to saved papers

Cellular Regulation of Amyloid Formation in Aging and Disease.

As the population is aging, the incidence of age-related neurodegenerative diseases, such as Alzheimer and Parkinson disease, is growing. The pathology of neurodegenerative diseases is characterized by the presence of protein aggregates of disease specific proteins in the brain of patients. Under certain conditions these disease proteins can undergo structural rearrangements resulting in misfolded proteins that can lead to the formation of aggregates with a fibrillar amyloid-like structure. Cells have different mechanisms to deal with this protein aggregation, where the molecular chaperone machinery constitutes the first line of defense against misfolded proteins. Proteins that cannot be refolded are subjected to degradation and compartmentalization processes. Amyloid formation has traditionally been described as responsible for the proteotoxicity associated with different neurodegenerative disorders. Several mechanisms have been suggested to explain such toxicity, including the sequestration of key proteins and the overload of the protein quality control system. Here, we review different aspects of the involvement of amyloid-forming proteins in disease, mechanisms of toxicity, structural features, and biological functions of amyloids, as well as the cellular mechanisms that modulate and regulate protein aggregation, including the presence of enhancers and suppressors of aggregation, and how aging impacts the functioning of these mechanisms, with special attention to the molecular chaperones.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app