Read by QxMD icon Read

Frontiers in Neuroscience

Rafael V M Manalo, Paul M B Medina
Previous studies have suggested that caffeine reduces the risk of L-DOPA-induced dyskinesia. However, caffeine is also known to promote dopamine signaling, which seemingly contradicts this observed effect. To this end, the study aimed to clarify the mechanism of caffeine neuroprotection in vivo when excess dopamine is present. Transgenic Caenorhabditis elegans (UA57) overproducing dopamine was exposed to caffeine for 7 days and monitored by observing GFP-tagged dopaminergic (DA) neurons via fluorescence microscopy...
2018: Frontiers in Neuroscience
Niels R Disbergen, Giancarlo Valente, Elia Formisano, Robert J Zatorre
Polyphonic music listening well exemplifies processes typically involved in daily auditory scene analysis situations, relying on an interactive interplay between bottom-up and top-down processes. Most studies investigating scene analysis have used elementary auditory scenes, however real-world scene analysis is far more complex. In particular, music, contrary to most other natural auditory scenes, can be perceived by either integrating or, under attentive control, segregating sound streams, often carried by different instruments...
2018: Frontiers in Neuroscience
Benedikt Zoefel, Sanne Ten Oever, Alexander T Sack
It is undisputed that presenting a rhythmic stimulus leads to a measurable brain response that follows the rhythmic structure of this stimulus. What is still debated, however, is the question whether this brain response exclusively reflects a regular repetition of evoked responses, or whether it also includes entrained oscillatory activity. Here we systematically present evidence in favor of an involvement of entrained neural oscillations in the processing of rhythmic input while critically pointing out which questions still need to be addressed before this evidence could be considered conclusive...
2018: Frontiers in Neuroscience
Jörg Encke, Werner Hemmert
The mammalian auditory system is able to extract temporal and spectral features from sound signals at the two ears. One important cue for localization of low-frequency sound sources in the horizontal plane are inter-aural time differences (ITDs) which are first analyzed in the medial superior olive (MSO) in the brainstem. Neural recordings of ITD tuning curves at various stages along the auditory pathway suggest that ITDs in the mammalian brainstem are not represented in form of a Jeffress-type place code. An alternative is the hemispheric opponent-channel code, according to which ITDs are encoded as the difference in the responses of the MSO nuclei in the two hemispheres...
2018: Frontiers in Neuroscience
Xin Liu, Yichen Lu, Ege Iseri, Yuhan Shi, Duygu Kuzum
Electrophysiology is a decades-old technique widely used for monitoring activity of individual neurons and local field potentials. Optogenetics has revolutionized neuroscience studies by offering selective and fast control of targeted neurons and neuron populations. The combination of these two techniques is crucial for causal investigation of neural circuits and understanding their functional connectivity. However, electrical artifacts generated by light stimulation interfere with neural recordings and hinder the development of compact closed-loop systems for precise control of neural activity...
2018: Frontiers in Neuroscience
Ido Hartogsohn
Past research has demonstrated to the ability of psychedelics to enhance suggestibility, and pointed to their ability to amplify perception of meaning. This paper examines the existing evidence for the meaning-enhancing properties of psychedelics, and argues that the tendency of these agents to enhance the perception of significance offers valuable clues to explaining their reported ability to stimulate a variety of therapeutic processes, enhance creativity, and instigate mystical-type experiences. Building upon previous research, which suggested the potential role of psychedelic meaning-enhancement in enhancing placebo response, the paper explores the mechanisms by which the meaning-amplifying properties of psychedelics might also play a role in enhancing creativity, as well as in effecting mystical-type experiences...
2018: Frontiers in Neuroscience
Raquel Marin, Mario Diaz
Estrogens (E2) exert a plethora of neuroprotective actions against aged-associated brain diseases, including Alzheimer's disease (AD). Part of these actions takes place through binding to estrogen receptors (ER) embedded in signalosomes, where numerous signaling proteins are clustered. Signalosomes are preferentially located in lipid rafts which are dynamic membrane microstructures characterized by a peculiar lipid composition enriched in gangliosides, saturated fatty acids, cholesterol, and sphingolipids. Rapid E2 interactions with ER-related signalosomes appear to trigger intracellular signaling ultimately leading to the activation of molecular mechanisms against AD...
2018: Frontiers in Neuroscience
Ashley C Nelson, Stephanie B Williams, Stephanie S Pistorius, Hyun J Park, Taylor J Woodward, Andrew J Payne, J Daniel Obray, Samuel I Shin, Jennifer K Mabey, Scott C Steffensen
The neural mechanisms underlying alcohol dependence are not well-understood. GABAergic neurons in the ventral tegmental area (VTA) are a relevant target for ethanol. They are inhibited by ethanol at physiologically-relevant levels in vivo and display marked hyperexcitability during withdrawal. In the present study, we examined the effects of the GABA(A) receptor agonist muscimol on VTA neurons ex vivo following withdrawal from acute and chronic ethanol exposure. We used standard cell-attached mode electrophysiology in the slice preparation to evaluate the effects of muscimol on VTA GABA neuron firing rate following exposure to acute and chronic ethanol in male CD-1 GAD-67 GFP mice...
2018: Frontiers in Neuroscience
Xinshen Li, Jianhua Peng, Jinwei Pang, Yue Wu, Xueping Huang, Yong Li, Jian Zhou, Long Gu, Xiaochuan Sun, Ligang Chen, Michael P Vitek, Yong Jiang
COG1410, a mimetic peptide derived from the apolipoprotein E (apoE) receptor binding region, exerts positive effect on neurological deficits in early brain injury (EBI) after experimental subarachnoid hemorrhage (SAH). Currently the neuroprotective effect of COG1410 includes inhibiting BBB disruption, reducing neuronal apoptosis, and neuroinflammation. However, the effect and mechanism of COG1410 to subcellular organelles disorder have not been fully investigated. As the main pathway for recycling long-lived proteins and damaged organelles, neuronal autophagy is activated in SAH and exhibits neuroprotective effects by reducing the insults of EBI...
2018: Frontiers in Neuroscience
Dona M P Jayakody, Peter L Friedland, Ralph N Martins, Hamid R Sohrabi
Age-related hearing loss (ARHL), presbycusis, is a chronic health condition that affects approximately one-third of the world's population. The peripheral and central hearing alterations associated with age-related hearing loss have a profound impact on perception of verbal and non-verbal auditory stimuli. The high prevalence of hearing loss in the older adults corresponds to the increased frequency of dementia in this population. Therefore, researchers have focused their attention on age-related central effects that occur independent of the peripheral hearing loss as well as central effects of peripheral hearing loss and its association with cognitive decline and dementia...
2018: Frontiers in Neuroscience
Vandana Padala, Arindam Basu, Garrick Orchard
Asynchronous event-based sensors, or "silicon retinae," are a new class of vision sensors inspired by biological vision systems. The output of these sensors often contains a significant number of noise events along with the signal. Filtering these noise events is a common preprocessing step before using the data for tasks such as tracking and classification. This paper presents a novel spiking neural network-based approach to filtering noise events from data captured by an Asynchronous Time-based Image Sensor on a neuromorphic processor, the IBM TrueNorth Neurosynaptic System...
2018: Frontiers in Neuroscience
Feng Tian, Junjie Wang, Cheng Xu, Hong Li, Xin Ma
In recent years, functional magnetic resonance imaging (fMRI) has been widely used in studies that explored the personality-brain association. Researches on personality neuroscience have the potential to provide personality psychology with explanatory models-that is, why people differ from each other rather than how they differ from each other (DeYoung and Gray, 2009). As one of the most important dimensions of personality traits, extraversion is the most stable core and a universal component in personality theory...
2018: Frontiers in Neuroscience
Priyadarshini Panda, Narayan Srinivasa
A fundamental challenge in machine learning today is to build a model that can learn from few examples. Here, we describe a reservoir based spiking neural model for learning to recognize actions with a limited number of labeled videos. First, we propose a novel encoding, inspired by how microsaccades influence visual perception, to extract spike information from raw video data while preserving the temporal correlation across different frames. Using this encoding, we show that the reservoir generalizes its rich dynamical activity toward signature action/movements enabling it to learn from few training examples...
2018: Frontiers in Neuroscience
Oscar J Avella Gonzalez, John K Tsotsos
Attention modulates neural selectivity and optimizes the allocation of cortical resources during visual tasks. A large number of experimental studies in primates and humans provide ample evidence. As an underlying principle of visual attention, some theoretical models suggested the existence of a gain element that enhances contrast of the attended stimuli. In contrast, the Selective Tuning model of attention (ST) proposes an attentional mechanism based on suppression of irrelevant signals. In this paper, we present an updated characterization of the ST-neuron proposed by the Selective Tuning model, and suggest that the inclusion of adaptation currents (Ih) to ST-neurons may explain the temporal profiles of the firing rates recorded in single V4 cells during attentional tasks...
2018: Frontiers in Neuroscience
Sandra Puentes, Hideki Kadone, Shigeki Kubota, Tetsuya Abe, Yukiyo Shimizu, Aiki Marushima, Yoshiyuki Sankai, Masashi Yamazaki, Kenji Suzuki
The Ossification of the Posterior Longitudinal Ligament (OPLL) is an idiopathic degenerative spinal disease which may cause motor deficit. For patients presenting myelopathy or severe stenosis, surgical decompression is the treatment of choice; however, despite adequate decompression residual motor impairment is found in some cases. After surgery, there is no therapeutic approach available for this population. The Hybrid Assistive Limb® (HAL) robot suit is a unique powered exoskeleton designed to predict, support, and enhance the lower extremities performance of patients using their own bioelectric signals...
2018: Frontiers in Neuroscience
Philippe Malcolm, Samuel Galle, Wim Derave, Dirk De Clercq
The bi-articular m. gastrocnemius and the mono-articular m. soleus have different and complementary functions during walking. Several groups are starting to use these biological functions as inspiration to design prostheses with bi-articular actuation components to replace the function of the m. gastrocnemius. Simulation studies indicate that a bi-articular configuration and spring that mimic the m. gastrocnemius could be beneficial for orthoses or exoskeletons. Our aim was to test the effect of a bi-articular and spring configuration that mimics the m...
2018: Frontiers in Neuroscience
Misato Yoshikawa, Yoshiyuki Soeda, Makoto Michikawa, Osborne F X Almeida, Akihiko Takashima
Hippocampal hyperactivity, ascribed to amyloid β (Aβ)-induced imbalances in neural excitation and inhibition, is found in patients with mild cognitive impairment, a prodromal stage of Alzheimer's disease (AD). To better understand the relationship between hippocampal hyperactivity and the molecular triggers of behavioral impairments in AD, we used Mn-enhanced MRI (MEMRI) to assess neuronal activity after subjecting mice to a task requiring spatial learning and memory. Depletion of endogenous tau in an amyloid precursor protein (APP) transgenic (J20) mouse line was shown to ameliorate hippocampal hyperactivity in J20 animals, tau depletion failed to reverse memory deficits associated with APP/Aβ overproduction...
2018: Frontiers in Neuroscience
Zhenyu Zhu, Rubin Wang, Fengyun Zhu
Based on the Hodgkin-Huxley model, the present study established a fully connected structural neural network to simulate the neural activity and energy consumption of the network by neural energy coding theory. The numerical simulation result showed that the periodicity of the network energy distribution was positively correlated to the number of neurons and coupling strength, but negatively correlated to signal transmitting delay. Moreover, a relationship was established between the energy distribution feature and the synchronous oscillation of the neural network, which showed that when the proportion of negative energy in power consumption curve was high, the synchronous oscillation of the neural network was apparent...
2018: Frontiers in Neuroscience
Jinkwon Jun, Soyoung Yoo
Neuroscientific imaging evidence (NIE) has become an integral part of the criminal justice system in the United States. However, in most legal cases, NIE is submitted and used only to mitigate penalties because the court does not recognize it as substantial evidence, considering its lack of reliability. Nevertheless, we here discuss how neuroscience is expected to improve the use of NIE in the legal system. For this purpose, we classified the efforts of neuroscientists into three research strategies: cognitive subtraction, the data-driven approach, and the brain-manipulation approach...
2018: Frontiers in Neuroscience
Jiayu Chen, Barnaly Rashid, Qingbao Yu, Jingyu Liu, Dongdong Lin, Yuhui Du, Jing Sui, Vince D Calhoun
Imaging genetics posits a valuable strategy for elucidating genetic influences on brain abnormalities in psychiatric disorders. However, association analysis between 2D genetic data (subject × genetic variable) and 3D first-level functional magnetic resonance imaging (fMRI) data (subject × voxel × time) has been challenging given the asymmetry in data dimension. A summary feature needs to be derived for the imaging modality to compute inter-modality association at subject level. In this work, we propose to use variability in resting state networks (RSNs) and functional network connectivity (FNC) as potential features for purpose of association analysis...
2018: Frontiers in Neuroscience
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"