Add like
Add dislike
Add to saved papers

High-Throughput Screening Methodology to Identify Alpha-Synuclein Aggregation Inhibitors.

An increasing number of neurodegenerative diseases are being found to be associated with the abnormal accumulation of aggregated proteins in the brain. In Parkinson's disease, this process involves the aggregation of alpha-synuclein (α-syn) into intraneuronal inclusions. Thus, compounds that inhibit α-syn aggregation represent a promising therapeutic strategy as disease-modifying agents for neurodegeneration. The formation of α-syn amyloid aggregates can be reproduced in vitro by incubation of the recombinant protein. However, the in vitro aggregation of α-syn is exceedingly slow and highly irreproducible, therefore precluding fast high throughput anti-aggregation drug screening. Here, we present a simple and easy-to-implement in-plate method for screening large chemical libraries in the search for α-syn aggregation modulators. It allows us to monitor aggregation kinetics with high reproducibility, while being faster and requiring lower protein amounts than conventional aggregation assays. We illustrate how the approach enables the identification of strong aggregation inhibitors in a library of more than 14,000 compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app