Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Oxidation of microcystin-LR by ferrous-tetrapolyphosphate in the presence of oxygen and hydrogen peroxide.

Water Research 2017 May 2
Ferrous-tetrapolyphosphate complexes (Fe(II)-TPP) activate oxygen and hydrogen peroxide to produce reactive oxidants capable of degrading organic compounds. In this study, the Fe(II)-TPP/O2 and Fe(II)-TPP/H2 O2 systems were assessed for oxidative degradation of microcystin-LR (MC-LR), the most toxic and abundant cyanotoxin. The degradation of MC-LR was optimized for both the Fe(II)-TPP/O2 and Fe(II)-TPP/H2 O2 systems when the molar ratio of TPP:Fe(II) was approximately 5.7-5.9. The optimal H2 O2 dose for MC-LR degradation by Fe(II)-TPP/H2 O2 was found to be 320 μM. The Fe(II)-TPP/O2 and Fe(II)-TPP/H2 O2 systems exhibited two pH optima for MC-LR degradation i.e., ∼7 and 9, which can be attributed to pH-dependent reactivity changes of the resultant oxidants (most likely the ferryl-tetrapolyphostate complex, Fe(IV)-TPP). Liquid chromatography-mass spectrometry identified 22 compounds produced by the oxidation of MC-LR, including four primary oxidation products. One of the primary products, in particular, was formed via oxidative cleavage of the alkene group in the Mdha moiety of MC-LR. This compound and its secondary oxidation products are rarely found when MC-LR is transformed by other oxidants and is believed to reflect a unique reaction pathway involving Fe(IV)-TPP. Meanwhile, the hepatotoxicity of the reaction solution decreased concurrently with a decrease on MC-LR concentration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app