Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Distinctive expression signatures of serum microRNAs in ischaemic stroke and transient ischaemic attack patients.

Circulating microRNAs (miRNAs) have recently emerged as promising biomarkers for ischaemic stroke (IS). However, the expression patterns of specific miRNAs in transient ischaemic attack (TIA) patients have not been investigated. Their predictive values for the presence of IS and TIA and their relationships to the neurological deficit severity of IS and the subsequent stroke risk after TIA remain unclear exactly. In this study, 754 miRNAs were initially screened by the TaqMan Low Density Array (TLDA) in two pooled serum samples from 50 IS patients and 50 controls. Markedly altered miRNAs were subsequently validated by individual quantitative reverse-transcription PCR (qRT-PCR) assays first in the same cohort of TLDA and further confirmed in another larger cohort including 177 IS, 81 TIA patients and 42 controls. Consequently, TLDA screening showed that 71 miRNAs were up-regulated and 49 miRNAs were down-regulated in IS patients. QRT-PCR validation confirmed that serum levels of miR-23b-3p, miR-29b-3p, miR-181a-5p and miR-21-5p were significantly increased in IS patients. Strikingly, serum levels of miR-23b-3p, miR-29b-3p and miR-181a-5p were also significantly elevated in TIA patients. Furthermore, up-regulated miR-23b-3p, miR-29b-3p and miR-21-5p could clearly differentiate between IS and TIA patients. Logistic regression and receiver-operating characteristic curve analyses demonstrated that these altered miRNAs may function as predictive and discriminative biomarkers for IS and TIA, and their distinctive expression signatures may contribute to assessing neurological deficit severity of IS and subsequent stroke risk after TIA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app