Add like
Add dislike
Add to saved papers

Microleakage at Different Implant-Abutment Connections Under Unloaded and Loaded Conditions.

PURPOSE: This study evaluated the microleakage at different implant-abutment (I-A) connections under unloaded and loaded conditions.

MATERIALS AND METHODS: Forty implants, specially designed with an opening at the apex, were grouped according to the I-A and screw device: external hexagon implants with titanium (EH) or EH diamond-like carbon screws fixing the abutment; internal hexagon implants with titanium screws (IH); and Morse taper implants with solid (MT) or MT passing screws (MTps) abutments. The implants were fixed in a 2-compartment device, and toluidine blue solution (1.0 mg/mL) was placed at the I-A interface (upper compartment). The lower compartment was filled with purified water. Four implants of each group were loaded (50 N, 1.2 Hz) and after 50,000, 100,000, 200,000, and 300,000 cycles, aliquots were collected from the lower compartment for absorbance reading. Data were analyzed using analysis of variance for repeated measurements and Tukey (α = 0.05).

RESULTS: Although microleakage increased over time in most of the groups, MTps group showed lower values when loaded (P < 0.05). The DLC on the EH screw did not prevent microleakage (P < 0.05).

CONCLUSION: It can be concluded that MT connection is more effective to prevent microleakage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app