Add like
Add dislike
Add to saved papers

Development of a multiperspective optical measuring system for investigating decaying switching arcs at the nozzle exit of circuit breakers.

Applied Optics 2017 March 2
High-voltage gas circuit breakers, which play an important role in the operation and protection of the power grid, function by drawing an arc between two contacts and then extinguishing it by cooling it using a transonic gas flow. Improving the design of circuit breakers requires an understanding of the physical processes in the interruption of the arc, particularly during the zero crossing of the alternating current (the point in time when the arc can be interrupted). Most diagnostic techniques currently available focus on measurement of current, voltage, and gas pressure at defined locations. However, these integral properties do not give sufficient insight into the arc physics. To understand the current interruption process, spatially resolved information about the density, temperature, and conductivity of the arc and surrounding gas flow is needed. Owing to the three-dimensional, unstable nature of the arc in a circuit breaker, especially near current zero, a spatially resolved, tomographic diagnostic technique is required that is capable of freezing the rapid, transient behavior and that is insensitive to the vibrations and electromagnetic interference inherent in the interruption of short-circuit current arcs. Here a new measurement system, based on background-oriented schlieren (BOS) imaging, is presented and assessed. BOS imaging using four beams consisting of white light sources, a background pattern, imaging optics, and a camera permits measurement of the line-of-sight integrated refractive index. Tomographic reconstruction is used to determine the three-dimensional, spatially resolved index of refraction distribution that in turn is used to calculate the density. The quantitative accuracy of a single beam of the BOS setup is verified by using a calibration lens with a known focal length. The ability of the tomographic reconstruction to detect asymmetric features of the arc and surrounding gas flow is assessed semiquantitatively using a nozzle that generates two gas jets, as described in [Exp. Fluids43, 241 (2007)EXFLDU0723-486410.1007/s00348-007-0331-1]. Experiments using a simple model of a circuit breaker, which provides optical access to an ∼1  kA arc that burns between two contacts and is blown through a nozzle system by synthetic air from a high pressure reservoir, are also described. The density in the decaying arc and surrounding gas flow is reconstructed, and the limitations of the technique, which are related to the temporal and spatial resolution, are addressed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app