Add like
Add dislike
Add to saved papers

Dual MIMU Pedestrian Navigation by Inequality Constraint Kalman Filtering.

Sensors 2017 Februrary 23
The foot-mounted inertial navigation system is an important method of pedestrian navigation as it, in principle, does not rely any external assistance. A real-time range decomposition constraint method is proposed in this paper to combine the information of dual foot-mounted inertial navigation systems. It is well known that low-cost inertial pedestrian navigation aided with both ZUPT (zero velocity update) and the range decomposition constraint performs better than those in their own respective methods. This paper recommends that the separation distance between the position estimates of the two foot-mounted inertial navigation systems be restricted by an ellipsoidal constraint that relates to the maximum step length and the leg height. The performance of the proposed method is studied by utilizing experimental data, and the results indicate that the method can effectively correct the dual navigation systems' position over the traditional spherical constraint.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app