Add like
Add dislike
Add to saved papers

Centrifugeless dispersive liquid-liquid microextraction based on salting-out phenomenon as an efficient method for determination of phenolic compounds in environmental samples.

A new centrifugeless dispersive liquid-liquid microextraction (DLLME) method was applied for the convenient extraction of some phenolic compounds from environmental samples. After dispersing the extracting solvent into the sample solution (10.0 mL), the mixture was passed through a small column filled with 5 g sodium chloride. As a result, phase separation was achieved via the salting-out phenomenon, and the extracting solvent was suspended on top of the sample solution. Using a low-toxic and solidifiable extracting solvent (1-dodecanol), after immersing the column into an ice bath, the extracting solvent was solidified, collected easily, and injected into an HPLC-UV instrument. The overall extraction time was 7 min, consumption of the extracting solvent was efficiently reduced to 50 μL, and the centrifugation step was simply eliminated, which made the automation of the procedure easier than the normal DLLME technique. A series of parameters influencing the extraction were investigated systematically. The optimal experimental conditions were found to be 50 μL of 1-dodecanol as the extracting solvent, a flow rate of 2.0 mL min-1 , and a pH value of 4.0 for the sample solution. Under these conditions, the method provided a good linearity in the range of 0.5-800 ng mL-1 , low limits of detection (0.1-0.3 ng mL-1 ), good extraction repeatabilities (RSDs below 9.1%, n = 5), and enrichment factors of 100-160. Graphical Abstract Schematic diagram of the centrifugeless dispersive liquid-liquid microextraction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app