Add like
Add dislike
Add to saved papers

Proinflammatory Cytokines Impair Vitamin D-Induced Host Defense in Cultured Airway Epithelial Cells.

Vitamin D is a regulator of host defense against infections and induces expression of the antimicrobial peptide hCAP18/LL-37. Vitamin D deficiency is associated with chronic inflammatory lung diseases and respiratory infections. However, it is incompletely understood if and how (chronic) airway inflammation affects vitamin D metabolism and action. We hypothesized that long-term exposure of primary bronchial epithelial cells to proinflammatory cytokines alters their vitamin D metabolism, antibacterial activity, and expression of hCAP18/LL-37. To investigate this, primary bronchial epithelial cells were differentiated at the air-liquid interface for 14 days in the presence of the proinflammatory cytokines, TNF-α and IL-1β (TNF-α/IL-1β), and subsequently exposed to vitamin D (inactive 25(OH)D3 and active 1,25(OH)2 D3 ). Expression of hCAP18/LL-37, vitamin D receptor, and enzymes involved in vitamin D metabolism (CYP24A1 and CYP27B1) was determined using quantitative PCR, Western blot, and immunofluorescence staining. Furthermore, vitamin D-mediated antibacterial activity was assessed using nontypeable Haemophilus influenzae. We found that TNF-α/IL-1β treatment reduced vitamin D-induced expression of hCAP18/LL-37 and killing of nontypeable H. influenzae. In addition, CYP24A1 (a vitamin D-degrading enzyme) was increased by TNF-α/IL-1β, whereas CYP27B1 (that converts 25(OH)D3 to its active form) and vitamin D receptor expression remained unaffected. Furthermore, we have demonstrated that the TNF-α/IL-1β-mediated induction of CYP24A1 was, at least in part, mediated by the transcription factor specific protein 1, and the epidermal growth factor receptor-mitogen-activated protein kinase pathway. These findings indicate that TNF-α/IL-1β decreases vitamin D-mediated antibacterial activity and hCAP18/LL-37 expression via induction of CYP24A1 and suggest that chronic inflammation impairs protective responses induced by vitamin D.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app