Add like
Add dislike
Add to saved papers

Identification of nontuberculous mycobacteria using multilocous sequence analysis of 16S rRNA, hsp65, and rpoB.

BACKGROUND: The isolation of nontuberculous mycobacteria (NTM) from clinical specimens has increased, and they now are considered significant opportunistic pathogens. The aims of this study were to develop a database and interpretive criteria for identifying individual species. In addition, using clinical isolates, we evaluated the clinical usefulness of 16S rRNA, hsp65, and rpoB as target genes for this method.

METHODS: The sequences of NTM for 16S rRNA, hsp65, and rpoB were collected from GenBank and checked by manual inspection. Clinical isolates collected between 2005 and 2010 were used for DNA extraction, polymerase chain reaction, and sequencing of these three genes. We constructed a database for the genes and evaluated the clinical utility of multilocus sequence analysis (MLSA) using 109 clinical isolates.

RESULTS: A total 131, 130, and 122 sequences were collected from GenBank for 16S rRNA, hsp65, and rpoB, respectively. The percent similarities of the three genes ranged from 96.57% to 100% for the 16S rRNA gene, 89.27% to 100% for hsp65, and 92.71% to 100% for rpoB. When we compared the sequences of 109 clinical strains with those of the database, the rates of species-level identification were 71.3%, 86.79%, and 81.55% with 16S rRNA, hsp65, and rpoB, respectively. We could identify 97.25% of the isolates to the species level when we used MLSA.

CONCLUSION: There were significant differences among the utilities of the three genes for species identification. The MLSA technique would be helpful for identification of NTM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app