Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

CSN5/JAB1 suppresses the WNT inhibitor DKK1 in colorectal cancer cells.

The COP9 signalosome (CSN) is a multi-protein complex that is highly conserved in eukaryotes. Due to its regulatory impact on processes such as cell cycle, DNA damage response and apoptosis, the CSN is essential for mammalian cells. One of the best-studied functions of the CSN is the deNEDDylation of cullin-RING ligases (CRLs) via its catalytically active subunit CSN5/JAB1, thereby triggering the degradation of various target proteins. CSN5 was found to be overexpressed in many human cancer entities, including colon adenocarcinoma. Overactivation of WNT signaling is known as a key step in colon cancer development. Recently, we found that depletion of CSN5 in colorectal cancer (CRC) cells affects WNT signaling by downregulation of β-catenin. To investigate changes in gene expression associated with the CSN5 knockdown, we performed a microarray using cDNA from the CRC cell line SW480. We found the WNT ligand WNT6 and the WNT inhibitors DKK1 and DKK4 differentially regulated in CSN5 knockdown cells. DKK1 expression and DKK1 protein levels depended on CSN5 in different CRC cell lines. In addition, DKK1 secretion was increased following CSN5 knockdown, affecting WNT signaling in SW480 cells. Consequently, blocking of secreted DKK1 in cell-conditioned media abolished β-catenin downregulation in SW480 cells, while treatment with recombinant DKK1 mimicked the CSN5 knockdown effect. Furthermore, knockdown of DKK1 was able to rescue the proliferative deficiency of CSN5 knockdown cells. We conclude that downregulation of WNT signaling in colorectal cancer cells resulting from CSN5 knockdown is mediated, at least in part, by elevated DKK1 secretion. Moreover, experiments with the NEDDylation inhibitor MLN-4924 indicated that DKK1 expression is regulated by a so far unidentified repressor, the stability of which could be controlled by a CSN-regulated CRL.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app