Add like
Add dislike
Add to saved papers

Design and Optimization of a New Voltammetric Method for Determination of Isoniazid by Using PEDOT Modified Gold Electrode in Pharmaceuticls.

Isoniazid (INH) was studied with regard to its electrochemical treatment on a strongly alkaline solution of a poly (3,4-ethylenedioxythiophene)-modified gold electrode, using both cyclic voltammetric and controlled potential techniques. Electrocatalytic performance measurements of this composite electrode toward oxidation of INH exhibited an increase of 4-folds in oxidation peak densities compared to the bare gold electrode. Central composite design method was used to obtain optimum experimental conditions, and used critical parameters (pH (A), scan rate (mV/s, B) and temperature (C, C) to assess the effects on amperometric response. Optimum experimental conditions were achieved by using a pH of 9.2 with a scan rate of 260 mV/s and a temperature of 30 C. Under these circumstances, a good linear relationship was observed between peak current densities and INH concentration in the range of 0.05-2 μM, with correlation coefficient of 0.9998. Furthermore, the method was very sensitive (limit of quantitation, 0.0043 μM), accurate (relative error, -5.65 to 4.03) and precise (relative standard deviation %, ≤ 7.97). The method was also applied to determine INH in pharmaceutical formulations, and statistically compared the results with the official method using the two one-sided equivalence test; the results were in good agreement with those obtained by the official and reported methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app