Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Effects of Inoculation Procedures on Variability and Repeatability of Salmonella Thermal Resistance in Wheat Flour.

Limited prior research has shown that inoculation methods affect thermal resistance of Salmonella in low-moisture foods; however, these effects and their repeatability have not been systematically quantified. Consequently, method variability across studies limits utility of individual data sets and cross-study comparisons. Therefore, the objective was to evaluate the effects of inoculation methodologies on stability and thermal resistance of Salmonella in a low-moisture food (wheat flour), and the repeatability of those results, based on data generated by two independent laboratories. The experimental design consisted of a cross-laboratory comparison, both conducting isothermal Salmonella inactivation studies in wheat flour (~0.45 water activity, 80°C), utilizing five different inoculation methods: (i) broth-based liquid inoculum, (ii) lawn-based liquid inoculum, (iii) lawn-based pelletized inoculum, (iv) direct harvest of lawn culture with wheat flour, and (v) fomite transfer of a lawn culture. Inoculated wheat flour was equilibrated ~5 days to ~0.45 water activity and then was subjected to isothermal treatment (80°C) in aluminum test cells. Results indicated that inoculation method impacted repeatability, population stability, and inactivation kinetics (α = 0.05), regardless of laboratory. Salmonella inoculated with the broth-based liquid inoculum method and the fomite transfer of a lawn culture method exhibited instability during equilibration. Lawn-based cultures resulted in stable populations prior to thermal treatment; however, the method using direct harvest of lawn culture with wheat flour yielded different D-values across the laboratories (α = 0.05), which was attributed to larger potential impact of operator variability. The lawn-based liquid inoculum and the lawn-based pelletized inoculum methods yielded stable inoculation levels and repeatable D-values (~250 and ~285 s, respectively). Also, inoculation level (3 to 8 log CFU/g) did not affect D-values (using the lawn-based liquid inoculum method). Overall, the results demonstrate that inoculation methods significantly affect Salmonella population kinetics and subsequent interpretation of thermal inactivation data for low-moisture foods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app