Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The antidepressant-like effects of biperiden may involve BDNF/TrkB signaling-mediated BICC1 expression in the hippocampus and prefrontal cortex of mice.

Preclinical and clinical studies suggest that neuronal muscarinic acetylcholine receptor (M-AchR) antagonists have antidepressant-like properties. Despite the recent interest in bicaudal C homolog 1 gene (BICC1) as a target for the treatment of depression, the upstream signaling molecules that regulate BICC1 are unknown, and very few studies have addressed the involvement of BICC1 in the antidepressant-like effects of the selective M1-AchR inhibitor, biperiden. Growing evidence indicates that activation of brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase receptor B (TrkB) signaling may be involved in antidepressant-like activities. In this study, we investigated the role of BDNF/TrkB signaling in the regulation of BICC1 expression in the chronic unpredictable stress (CUS) mouse model of depression. Furthermore, we also examined whether BDNF/TrkB signaling contributes to the antidepressant-like effects of biperiden via down-regulation of BICC1 in the hippocampus and prefrontal cortex of mice. Our current data show that CUS exposure induced significant depression-like behaviors, down-regulation of BDNF/TrkB signaling and up-regulation of BICC1 in the hippocampus and prefrontal cortex of mice. However, biperiden significantly alleviated the CUS-induced abnormalities. Moreover, we found that the effects of biperiden were antagonized by pretreatment with the TrkB antagonist K252a. Our results indicate that BDNF/TrkB signaling may be the major upstream mediator of BICC1 involvement in the antidepressant-like effects of biperiden.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app