Add like
Add dislike
Add to saved papers

Next-generation sequencing analysis of twelve known causative genes in congenital hypothyroidism.

BACKGROUND: Gene variants have been reported to be associated with congenital hypothyroidism (CH), the purpose of this study was to analyze the mutation spectrum and prevalence of 12 known causative genes (TSHR, PAX8, NKX2.1, NKX2.5, FOXE1, DUOX2, TG, TPO, GLIS3, NIS, SLC26A4 and DEHAL1) in CH in China.

METHODS: Peripheral venous blood samples were collected from the patients. Genomic DNA was extracted from peripheral blood leukocytes. All exons and their exon-intron boundary sequences of the 12 known CH associated genes in 66 CH patients were screened by next-generation sequencing (NGS).

RESULTS: NGS analysis of 12 known CH associated genes revealed that 32 patients (32/66, 48.5%) were detected to have at least one potentially functional variant. 21, 9, 1, 1, 1 and 1 patients were found to have potential pathogenic variants in DUOX2, TG, PAX8, SLC26A4, TSHR and TPO genes, respectively. Novel variants included one DUOX2 and one TPO missense variants of unknown significance (VUS).

CONCLUSION: Our study expands the mutation spectrum of DUOX2 and TPO genes. 48.5% CH patients had at least one potential pathogenic variant. We found relatively high frequency of DUOX2 (31.8%) and TG (13.6%) mutations in our cohort.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app