Add like
Add dislike
Add to saved papers

Highly Conformal Ni Micromesh as a Current Collecting Front Electrode for Reduced Cost Si Solar Cell.

Despite relatively high manufacturing cost, crystalline-Si solar cell continues to hold promising future due to its high energy conversion efficiency and long life. As regards cost, one pertinent issue is the top electrode metallization of textured cell surface, which typically involves screen printing of silver paste. The associated disadvantages call for alternative methods that can lower the cost without compromising the solar cell efficiency. In the present work, a highly interconnected one-dimensional (1D) metal wire network has been employed as front electrode on conventional Si wafers. Here, for the first time, we report an innovative solution based crackle templating method for conformal metal wire network patterning over large textured surfaces. Laser beam induced current mapping showed uniform photocurrent collection by the electrodes without any shadow losses. With electroless deposition of Ni wire network on corrugated solar cell, a short circuit current of 33.28 mA/cm2 was obtained in comparison to 20.53 mA/cm2 without the network electrode. On comparing the efficiency with the conventional cells with screen printed electrodes, a 20% increment in efficiency has been observed. Importantly, the estimated manufacturing cost is at least two orders lower.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app