Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Comparative expression profile of microRNAs in Anopheles anthropophagus midgut after blood-feeding and Plasmodium infection.

Parasites & Vectors 2017 Februrary 17
BACKGROUND: Anopheles anthropophagus is one of the major vectors of malaria in Asia. MicroRNAs (miRNAs) play important roles in cell development and differentiation as well as in the cellular response to stress and infection. In a former study, we have investigated the global miRNA profiles in relation to sex in An. anthropophagus. However, the miRNAs contributing to the blood-feeding and infection with Plasmodium are still unknown.

METHODS: High-throughput sequencing was performed to identify miRNA profiles of An. anthropophagus midguts after blood-feeding and Plasmodium infection. The expression patterns of miRNA in different midgut libraries were compared based on transcripts per million reads (TPM), and further confirmed by Northern blots. Target prediction and pathway analysis were carried out to investigate the role of regulated miRNAs in blood-feeding and Plasmodium infection.

RESULTS: We identified 67 known and 21 novel miRNAs in all three libraries (sugar-feeding, blood-feeding and Plasmodium infection) in An. anthropophagus midguts. Comparing with the sugar-feeding, the experssion of nine (6 known and 3 novel) and ten (9 known and 1 novel) miRNAs were significantly upregulated and downregulated respectively after blood-feeding (P < 0.05, fold change ≥ 2 and TPM ≥ 10). Plasmodium infection induced the expression of thirteen (9 known and 4 novel) and eleven (9 known and 2 novel) miRNAs significantly upregulated and downregulated, respectively, compared with blood-feeding. The representative upregulated miR-92a in blood-feeding and downregulated miR-275 in Plasmodium infection were further confirmed by Northern Blot. Putative targets of these regulated miRNAs were further investigated and classified into their pathways.

CONCLUSIONS: This study suggests that miRNAs are involved in the blood-feeding and Plasmodium infection in An. anthropophagus midgut. Further studies of the function of these differential expressed miRNAs will facilitate in better understanding of mosquito biology and anti-parasite immunity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app