Journal Article
Review
Add like
Add dislike
Add to saved papers

Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes - A review.

Chemosphere 2017 May
The presence of emerging contaminants such as pharmaceuticals in natural waters has raised increasing concern due to their frequent appearance and persistence in the aquatic ecosystem and the threat to health and safety of aquatic life, even at trace concentrations. Conventional water treatment processes are known to be generally inadequate for the elimination of these persistent contaminants. Therefore, the use of advanced oxidation processes (AOPs) which are able to efficiently oxidize organic pollutants has attracted a great amount of attention. The main limitation of AOPs lies in their high operating costs associated with the consumption of energy and chemicals. Fenton-based processes, which utilize nontoxic and common reagents and potentially can exploit solar energy, will considerably reduce the removal cost of recalcitrant contaminants. The disadvantages of homogeneous Fenton processes, such as the generation of high amounts of iron-containing sludge and limited operational range of pH, have prompted much attention to the use of heterogeneous Fenton processes. In this review, the impacts of some controlling parameters including the H2O2 and catalyst dosage, solution pH, initial contaminants concentrations, temperature, type of catalyst, intensity of irradiation, reaction time and feeding mode on the removal efficiencies of hetero/homogeneous Fenton processes are discussed. In addition, the combination of Fenton-type processes with biological systems as the pre/post treatment stages in pilot-scale operations is considered. The reported experimental results obtained by using Fenton and photo-Fenton processes for the elimination of pharmaceutical contaminants are also compiled and evaluated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app