Add like
Add dislike
Add to saved papers

The NCLX-type Na + /Ca 2+ Exchanger NCX-9 Is Required for Patterning of Neural Circuits in Caenorhabditis elegans .

NCLX is a Na+ /Ca2+ exchanger that uses energy stored in the transmembrane sodium gradient to facilitate the exchange of sodium ions for ionic calcium. Mammals have a single NCLX, which has been shown to function primarily at the mitochondrion and is an important regulator of neuronal physiology by contributing to neurotransmission and synaptic plasticity. The role of NCLX in developmental cell patterning ( e.g. in neural circuits) is largely unknown. Here we describe a novel role for the Caenorhabditis elegans NCLX-type protein, NCX-9, in neural circuit formation. NCX-9 functions in hypodermal seam cells that secrete the axon guidance cue UNC-129/BMP, and our data revealed that ncx-9 -/- mutant animals exhibit development defects in stereotyped left/right axon guidance choices within the GABAergic motor neuron circuit. Our data also implicate NCX-9 in a LON-2/heparan sulfate and UNC-6/netrin-mediated, RAC-dependent signaling pathway to guide left/right patterning within this circuit. Finally, we also provide in vitro physiology data supporting the role for NCX-9 in handling calcium exchange at the mitochondrion. Taken together, our work reveals the specificity by which the handling by NCLX of calcium exchange can map to neural circuit patterning and axon guidance decisions during development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app