Add like
Add dislike
Add to saved papers

Optical coherence tomography with a 2.8-mm beam diameter and sensorless defocus and astigmatism correction.

An optical coherence tomography (OCT) system with a 2.8-mm beam diameter is presented. Sensorless defocus correction can be performed with a Badal optometer and astigmatism correction with a liquid crystal device. OCT B-scans were used in an image-based optimization algorithm for aberration correction. Defocus can be corrected from ? 4.3 ?? D to + 4.3 ?? D and vertical and oblique astigmatism from ? 2.5 ?? D to + 2.5 ?? D . A contrast gain of 6.9 times was measured after aberration correction. In comparison with a 1.3-mm beam diameter OCT system, this concept achieved a 3.7-dB gain in dynamic range on a model retina. Both systems were used to image the retina of a human subject. As the correction of the liquid crystal device can take more than 60 s, the subject’s spectacle prescription was adopted instead. This resulted in a 2.5 times smaller speckle size compared with the standard OCT system. The liquid crystal device for astigmatism correction does not need a high-voltage amplifier and can be operated at 5 V. The correction device is small ( 9 ?? mm × 30 ?? mm × 38 ?? mm ) and can easily be implemented in existing designs for OCT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app