Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Rare damaging variants in DNA repair and cell cycle pathways are associated with hippocampal and cognitive dysfunction: a combined genetic imaging study in first-episode treatment-naive patients with schizophrenia.

Translational Psychiatry 2017 Februrary 15
Schizophrenia is a complex neurodevelopmental disorder where changes in both hippocampus and memory-related cognitive functions are central. However, the exact relationship between neurodevelopmental-genetic factors and hippocampal-cognitive dysfunction remains unclear. The general aim of our study is to link the occurrence of rare damaging mutations involved in susceptibility gene pathways to the structure and function of hippocampus in order to define genetically and phenotypically based subgroups in schizophrenia. In the present study, by analyzing the exome sequencing and magnetic resonance imaging data in 94 first-episode treatment-naive schizophrenia patients and 134 normal controls, we identified that a cluster of rare damaging variants (RDVs) enriched in DNA repair and cell cycle pathways was present only in a subgroup including 39 schizophrenic patients. Furthermore, we found that schizophrenic patients with this RDVs show increased resting-state functional connectivity (rsFC) between left hippocampus (especially for left dentate gyrus) and left inferior parietal cortex, as well as decreased rsFC between left hippocampus and cerebellum. Moreover, abnormal rsFC was related to the deficits of spatial working memory (SWM; that is known to recruit the hippocampus) in patients with the RDVs. Taken together, our data demonstrate for the first time, to our knowledge, that damaging rare variants of genes in DNA repair and cell cycle pathways are associated with aberrant hippocampal rsFC, which was further relative to cognitive deficits in first-episode treatment-naive schizophrenia. Therefore, our data provide some evidence for the occurrence of phenotypic alterations in hippocampal and SWM function in a genetically defined subgroup of schizophrenia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app