Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Size Control of Silver-Core/Silica-Shell Nanoparticles Fabricated by Laser-Ablation-Assisted Chemical Reduction.

Aqueous colloidal silver nanoparticles have substantial potential in biological application as markers and antibacterial agents and in surface-enhanced Raman spectroscopy applications. A simple method of fabrication and encapsulation into an inert shell is of great importance today to make their use ubiquitous. Here we show that colloids of silver-core/silica-shell nanoparticles can be easily fabricated by a laser-ablation-assisted chemical reduction method and their sizes can be tuned in the range of 2.5 to 6.3 nm by simply choosing a proper water-ethanol proportion. The produced silver nanoparticles possess a porous amorphous silica shell that increases the inertness and stability of colloids, which decreases their toxicity compared with those without silica. The presence of a thin 2 to 3 nm silica shell was proved by EDX mapping. The small sizes of nanoparticles achieved by this method were analyzed using optical techniques, and they show typical photoluminescence in the UV-vis range that shifts toward higher energies with decreasing size.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app