Add like
Add dislike
Add to saved papers

Central Signaling Elements of Intercellular Reactive Oxygen/Nitrogen Species-dependent Induction of Apoptosis in Malignant Cells.

Intercellular reactive oxygen/reactive nitrogen species-(ROS/RNS)-dependent induction of apoptosis in malignant cells is discussed as a potential control step during oncogenesis. In previous studies, the mechanism of intercellular apoptosis-inducing signaling was mainly established through the use of specific inhibitors and scavengers. Here, a detailed analysis was carried out based on small interfering ribonucleic acid (siRNA)-mediated knockdown of central players of intercellular ROS/RNS signaling and of the mitochondrial and the FAS receptor-dependent pathway of apoptosis. The data show that transforming growth factor β1, transforming growth factor β receptor, NADPH oxidase-1 (NOX1), NOX1 organizer, and NOX1 activator control the HOCl and the NO/peroxynitrite signaling pathways. Dual oxidase-1 (DUOX1) is specifically involved in HOCl signaling, and NO synthase in NO/peroxynitrite signaling. Both pathways utilize intracellular signal transduction through protein kinase C zeta, sphingomyelinase and central elements of the mitochondrial pathway of apoptosis, whereas the FAS receptor and FAS ligand do not seem to play a role.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app