Add like
Add dislike
Add to saved papers

The effects of tibia profile, distraction angle, and knee load on wedge instability and hinge fracture: A finite element study.

Several plate systems for high tibial osteotomy (HTO) have been developed to stabilize the opening wedge of an osteotomized tibia. Among them, the TomoFix system, having a quasi-straight and T-shaped design, has been widely adopted in the literature. However, this system is implemented by inserting a lag (i.e., cortical) screw through the proximal combi-hole, to deform the plate and pull the distal tibia toward the plate. This process potentially induces plate springback and creates an elastic preload on the osteotomized tibia, especially at the lateral hinge of the distracted wedge. Using the finite-element method, this study aims to investigate the contoured effect of lag-screw application on the biomechanical behavior of the tibia-plate construct. Two tibial profiles (normal and more concave), three distraction angles (6°, 9°, and 12°), and three knee loads (intraoperative: contouring plate; postoperative: weight and nonweight bearing) are systematically varied in this study. The wedge instability and fracture risk at the lateral hinge are chosen as the comparison indices. The results show the necessity of preoperative planning for a precontoured procedure, rather than elastic deformation using a lag screw. Within the intraoperative period, a more concave tibial profile and/or reduced distraction angle (i.e., 6° or 9°) necessitate a higher compressive load to elastically deform the plate, thereby deteriorating the lateral-hinge fracture risk. A precontoured plate is recommended in the case that the proximal tibia is highly concave and the distraction angle is insufficient to stretch the tibial profile.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app