Add like
Add dislike
Add to saved papers

Self-Assembly-Directed Aerogel and Membrane Formation from a Magnetic Composite: An Approach to Developing Multifunctional Materials.

Herein, we report the preparation of an aerogel and a membrane from a magnetic composite material by tuning the self-assembly at the molecular level. The gel exhibits an excellent oil absorption property, and the membrane shows a remarkable autonomous self-healing property. The composite is formed from an organosilicon-modified poly(amidoamine) (PAMAM) dendrimer, which is linked with iron oxide nanoparticles and poly(vinyl alcohol). Upon the addition of a cross-linker (formaldehyde), the system undergoes a fast self-assembly and gelation process. The aerogel, obtained after drying of the hydrogel, was modified with 1- bromohexadecane at room temperature and utilized for the removal of oil from water with 22.9 g/g absorption capacity. Intriguingly, the same system forms a membrane with 97% autonomous self-healing ability, in the absence of the cross-linker. The membrane was used to remove the salt content from water with an efficiency of 85%. The control experiments suggest that the presence of the magnetic material (iron oxide) plays a key role in the formation of both the aerogel and membrane.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app