Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Spontaneous Rippling and Subsequent Polymer Molding on Yttria-Stabilized Zirconia (110) Surfaces.

ACS Nano 2017 Februrary 29
Spontaneous nanoripple formation on (110) surfaces of yttria-stabilized zirconia, YSZ-(110), is achieved by diffusional surface doping with rare-earth oxides. Periodic arrays of parallel nanobars separated by channels (period ∼100 nm) grow out of the dopant sources, covering relatively wide areas of the surface (∼10 μm). The nanobars mound up on the surface by diffusion, exhibiting morphological uniformity and alignment, with their long axis lying parallel to the [11̅0] direction in the YSZ-(110) surface. The process for forming these nanobar arrays can be as simple as sprinkling of rare-earth oxide powder (dopant source) on YSZ-(110) surface and annealing in a high temperature air furnace. However, higher control on dopant dispersion on the surface is demonstrated with other techniques, including photolithography and inkjet printing. The ripple arrays extend anisotropically on the (110) surface, obeying the parabolic growth law, and showing principal values of the rate constant along [11̅0] (maximum) and [001] (minimum), as expected from the symmetry of the (110) surface. The self-patterned ceramic substrates are well-suited for pattern transfer by replica molding, as illustrated by single-step molding with polydimethylsiloxane (PDMS), which is a widely used biomaterial in cell-culture studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app