Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Microwave-Assisted Synthesis of Stable and Highly Active Ir Oxohydroxides for Electrochemical Oxidation of Water.

ChemSusChem 2017 May 10
Water splitting for hydrogen production in acidic media has been limited by the poor stability of the anodic electrocatalyst devoted to the oxygen evolution reaction (OER). To help circumvent this problem we have synthesized a class of novel Ir oxohydroxides by rapid microwave-asisted hydrothermal synthesis, which bridges the gap between electrodeposited amorphous IrOx films and crystalline IrO2 electrocatalysts prepared by calcination routes. For electrode loadings two orders of magnitude below current standards, the synthesized compounds present an unrivalled combination of high activity and stability under commercially relevant OER conditions in comparison to reported benchmarks, without need for pretreatment. The best compound achieved a lifetime 33 times longer than the best commercial Ir benchmark. Thus, the reported efficient synthesis of an Ir oxohydroxide phase with superior intrinsic OER performance constitutes a major step towards the targeted design of cost-efficient Ir based OER electrocatalysts for acidic media.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app