Journal Article
Review
Add like
Add dislike
Add to saved papers

The DENSE AND ERECT PANICLE 1 (DEP1) gene offering the potential in the breeding of high-yielding rice.

Breeding Science 2016 December
The erect panicle model super-rice can rationally transform the solar energy into accumulated organic matter (biomass) and increase grain yield. The phenotype of erect panicle architecture controlled by DENSE AND ERECT PANICLE 1 (DEP1) has been used in rice breeding for nearly a century owing to its high-yield, lodging tolerance with strong stem, reasonable population structure and high nitrogen use efficiency. DEP1 is a G protein γ subunit that is involved in the regulation of erect panicle, number of grains per panicle, nitrogen uptake, and stress-tolerance through the G protein signal pathway. Here we review the development of erect panicle rice varieties, DEP1 alleles and regulatory network, and its physiological and morphological functions. Additionally, the further increasing the yield potential of erect-panicle super-rice, and the development of molecular designing breeding for indica-japonica hybrid rice with the dep1 gene are also prospected.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app