Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Neuromelanin MRI is useful for monitoring motor complications in Parkinson's and PARK2 disease.

Parkinson's disease (PD) is caused by the loss of dopaminergic neurons. Recently, specific T1-weighted magnetic resonance imaging (MRI) at 3 Tesla was reported to visualize neuromelanin (NM)-related contrast of dopaminergic neurons. Using NM-MRI, we analyzed whether disease severity and motor complications (MC) are associated with the degree of dopaminergic neuronal degeneration in the substantia nigra pars compacta (SNc) in patients with idiopathic PD (PD) and PARK2. We examined 27 individuals with PD, 11 with PARK2, and a control group of 18. A 3T MRI was used to obtain a modified NM-sensitive T1-weighted fast-spin echo sequence. The size of the SNc was determined as the number of pixels with signal intensity higher than background signal intensity +2 standard deviations. NM-MRI indicated that the T1 hyperintense area in the SNc in patients with PD and PARK2 was significantly smaller than that in control subjects. When compared with the PD group without MC, both PD with MC and PARK2 showed a markedly smaller size of NM-rich SNc area. Receiver operating characteristic curve analysis revealed a sensitivity of 86.96% and a specificity of 100% in discriminating between patients with and without MC (area under the curve = 0.98). Correlation analysis between the T1 hyperintense SNc area and L-dopa and L-dopa equivalent dose demonstrated a significant negative correlation. The association between a reducing SNc NM-rich area and MC with increasing dopaminergic medication dose suggests that NM-MRI findings might be a useful tool for monitoring the development of MC in PD and PARK2.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app