Add like
Add dislike
Add to saved papers

Kinetically controlled synthesis of nanoporous Au and its enhanced electrocatalytic activity for glucose-based biofuel cells.

Nanoscale 2017 Februrary 17
Nanoporous gold (NPG) structures, which possess abundant high-index facets, kinks, and steps, have been demonstrated as effective catalysts for the glucose electrooxidation in biofuel cells. Herein, we designed surface-clean NPG structures with high-index facets by a trisodium citrate (Na3 Cit) self-initiated reduction of chloroauric acid (HAuCl4 ) in a water-ice bath followed by a kinetically controlled self-assembly manner. This strategy breaks through the traditional trisodium citrate thermal-reducing chloroauric acid approach where solutions are required to heat to a certain temperature for the reaction to initiate. However, herein, the surface-clean NPG structures yielded highly enhanced catalytic activity in glucose electrooxidation with approximately 9 A cm-2 mg-1 current density, which is over 20 times higher than that of Au nanoparticles devised by Turkevich (Turkevich-Au NPs) under the same conditions. This remarkable electrocatalytic activity could be ascribed to the large electrochemically active surface area, clean surface, and high-index facets or highly active sites of the porous structure. The employment of the surface-clean NPG with high-index facets for glucose electrooxidation promises a substantial improvement in the current biofuel cell technology and indicates the potential of biofuel cells in practical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app