Add like
Add dislike
Add to saved papers

Room-temperature electrically driven phase transition of two-dimensional 1T-TaS 2 layers.

Nanoscale 2017 Februrary 17
Due to the strong electron-electron and electron-phonon interactions, the transition metal dichalcogenide 1T-TaS2 exhibits temperature dependent as well as electric field driven charge density wave (CDW) phase transitions (PTs). In this work, we investigate the thickness dependence of the electric field driven PT in 1T-TaS2 two-dimensional (2D) flakes. Electrically driven PT between high- and low-resistance states occurs at temperatures in the range of 60-300 K. For a thin 1T-TaS2 (≤8.8 nm) sample, only one PT is triggered, whereas thick films experience double PTs (13-17 nm) and multiple PTs (≥17.5 nm) until reaching the final low-resistance state. The multiple PTs may imply the existence of hidden nearly-commensurate charge density wave (NCCDW) states. In addition, a threshold electric field is observed, in which the low-resistance state is unable to resume the high-resistance state. Finally, we fabricate a 1T-TaS2 /graphene hybrid field effect transistor to achieve a gate-tunable PT at room temperature. Such a hybrid device might provide a new avenue for the construction of CDW-based memories based on 2D materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app