Add like
Add dislike
Add to saved papers

Plasmon-enhanced sensitivity of spin-based sensors based on a diamond ensemble of nitrogen vacancy color centers.

Optics Letters 2017 Februrary 2
A method for enhancement of the sensitivity of a spin sensor based on an ensemble of nitrogen vacancy (NV) color centers was demonstrated. Gold nanoparticles (NPs) were deposited on the bulk diamond, which had NV centers distributed on its surface. The experimental results demonstrate that, when using this simple method, plasmon enhancement of the deposited gold NPs produces an improvement of ∼10 times in the quantum efficiency and has also improved the signal-to-noise ratio by approximately ∼2.5 times. It was also shown that more electrons participated in the spin sensing process, leading to an improvement in the sensitivity of approximately seven times; this has been proved by Rabi oscillation and optical detection of magnetic resonance (ODMR) measurements. The proposed method has proved to be a more efficient way to design an ensemble of NV centers-based sensors; because the result increases in the number of NV centers, the quantum efficiency and the contrast ratio could greatly increase the device's sensitivity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app