Add like
Add dislike
Add to saved papers

Impacts of road deicing salts on the early-life growth and development of a stream salmonid: Salt type matters.

The use of road deicing salts in regions that experience cold winters is increasing the salinity of freshwater ecosystems, which threatens freshwater resources. Yet, the impacts of environmentally relevant road salt concentrations on freshwater organisms are not well understood, particularly in stream ecosystems where salinization is most severe. We tested the impacts of deicing salts-sodium chloride (NaCl), magnesium chloride (MgCl2), and calcium chloride (CaCl2)-on the growth and development of newly hatched rainbow trout (Oncorhynchus mykiss). We exposed rainbow trout to a wide range of environmentally relevant chloride concentrations (25, 230, 860, 1500, and 3000 mg Cl(-) L(-1)) over an ecologically relevant time period (25 d). We found that the deicing salts studied had distinct effects. MgCl2 did not affect rainbow trout growth at any concentration. NaCl had no effects at the lowest three concentrations, but rainbow trout length was reduced by 9% and mass by 27% at 3000 mg Cl(-) L(-1). CaCl2 affected rainbow trout growth at 860 mg Cl(-) L(-1) (5% reduced length; 16% reduced mass) and these effects became larger at higher concentrations (11% reduced length; 31% reduced mass). None of the deicing salts affected rainbow trout development. At sub-lethal and environmentally relevant concentrations, our results do not support the paradigm that MgCl2 is the most toxic deicing salt to fish, perhaps due to hydration effects on the Mg(2+) cation. Our results do suggest different pathways for lethal and sub-lethal effects of road salts. Scaled to the population level, the reduced growth caused by NaCl and CaCl2 at critical early-life stages has the potential to negatively affect salmonid recruitment and population dynamics. Our findings have implications for environmental policy and management strategies that aim to reduce the impacts of salinization on freshwater organisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app