Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Aspect ratio tuned red-shift of photoluminescence emission of PbSe nanorods investigated by electron holography.

The physical properties of nanometer scale semiconductors are known to be sensitively influenced by their aspect ratios, but the intrinsic mechanisms still remain unclear. Shape-controlled anisotropic PbSe nanorods were obtained by means of the addition of MnCl2 , and the aspect ratio of the nanorods can be continuously tuned from 1 to 10 by simply modulating the amount of chloride ions. It was demonstrated that an optimized concentration of Cl- anions is about 0.04mmol, which controls the competition between thermodynamics and kinetics mechanisms. The emission peaks of the infrared absorbance and photoluminescence spectra were significantly tuned from 1664nm to 1840nm and from 1459nm to 1938nm only by the aspect ratios, respectively. A strong electric dipole phenomenon localized onside the surface of PbSe nanorods terminated by Pb2+ charge was found by using high-spatial-resolution off-axis electron holography, which was furthermore evidenced by the quantitative analysis of the mean inner potential and the surfaces charge. The charge intensity depended on the aspect ratio of PbSe nanorods. The results provide clear evidence that the energy gap interval reduces as a result of the increasing of conduction charge amounts. A novel strategy to facilely shift the peak position of absorbance and photoluminescence emission was therefore proposed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app