Add like
Add dislike
Add to saved papers

A novel crystallization pathway for SiGe alloy rapid cooling.

Understanding the structural evolution of covalent systems under rapid cooling is very important to establish a comprehensive solidification theory. Herein, we conducted molecular dynamics simulations to investigate the crystallization of silicon-germanium (SiGe) alloys. It was found that during crystallization, the saturation and orientation of covalent bonds are satisfied in order, resulting in three phase transitions. The saturation is satisfied during a continuous phase transition that occurs in the super-cooled liquid state. When the orientation was satisfied at the local scale, a novel state, the critical-nuclei crystalline (CNC) phase was obtained, where the local diamond structures increase in number with time and ultimately stabilize at an average size at the critical value. Finally with a coordinated rearrangement of atoms, the orientation is satisfied globally and a stable diamond crystal is produced. For SiGe alloys this CNC phase is universal and rather stable, and the stable temperature range has a certain relationship with the cooling rate and number fraction of atoms. This novel pathway is believed to be universal for such materials including carbon. The CNC state can explain the observation that diamond can be obtained without high pressure. These findings will significantly advance the understanding of the mechanism of phase transition, particularly for covalently bonded materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app