Add like
Add dislike
Add to saved papers

Reliability of time-to-exhaustion and selected psycho-physiological variables during constant-load cycling at the maximal lactate steady-state.

The maximal lactate steady-state (MLSS) is frequently assessed for prescribing endurance exercise intensity. Knowledge of the intra-individual variability of the MLSS is important for practical application. To date, little is known about the reliability of time-to-exhaustion and physiological responses to exercise at MLSS. Twenty-one healthy men (age, 25.2 (SD 3.3) years; height, 1.83 (0.06) m; body mass, 78.9 (8.9) kg; maximal oxygen uptake, 57.1 (10.7) mL·min-1 ·kg-1 ) performed 1 incremental exercise test, and 2 constant-load tests to determine MLSS intensity. Subsequently, 2 open-end constant-load tests (MLSS 1 and 2) at MLSS intensity (3.0 (0.7) W·kg-1 , 76% (10%) maximal oxygen uptake) were carried out. During the tests, blood lactate concentrations, heart rate, ratings of perceived exertion (RPE), variables of gas exchange, and core body temperature were determined. Time-to-exhaustion was 50.8 (14.0) and 48.2 (16.7) min in MLSS 1 and 2 (mean change: -2.6 (95% confidence interval: -7.8, 2.6)), respectively. The coefficient of variation (CV) was high for time-to-exhaustion (24.6%) and for mean (4.8 (1.2) mmol·L-1 ) and end (5.4 (1.7) mmol·L-1 ) blood lactate concentrations (15.7% and 19.3%). The CV of mean exercise values for all other parameters ranged from 1.4% (core temperature) to 8.3% (ventilation). At termination, the CVs ranged from 0.8% (RPE) to 11.8% (breathing frequency). The low reliability of time-to-exhaustion and blood lactate concentration at MLSS indicates that the precise individual intensity prescription may be challenging. Moreover, the obtained data may serve as reference to allow for the separation of intervention effects from random variation in our sample.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app