Add like
Add dislike
Add to saved papers

Tailoring Photoelectrochemical Performance and Stability of Cu(In,Ga)Se 2 Photocathode via TiO 2 -Coupled Buffer Layers.

We report on the photoelectrochemical (PEC) performance and stability of Cu(In,Ga)Se2 (CIGS)-based photocathodes for photocatalytic hydrogen evolution from water. Various functional overlayers, such as CdS, TiO2 , Znx Sny Oz , and a combination of the aforementioned, were applied on the CIGS to improve the performance and stability. We identified that the insertion of TiO2 overlayer on p-CIGS/n-buffer layers significantly improves the PEC performance. A multilayered photocathode consisting of CIGS/CdS/TiO2 /Pt exhibited the best current-potential characteristics among the tested photocathodes, which demonstrates a power-saved efficiency of 2.63%. However, repeated linear sweep voltammetry resulted in degradation of performance. In this regard, we focused on the PEC durability issues through in-depth chemical characterization that revealed the degradation was attributed to atomic redistribution of elements constituting the photocathode, namely, in-diffusion of Pt catalysts, out-diffusion of elements from the CIGS, and removal of the metal-oxide layers; the best-performing CIGS/CdS/TiO2 /Pt photocathode retained its initial performance until the TiO2 overlayer was removed. It was also found that the durability of CIGS photocathodes with a TiO2 -coated metal-oxide buffer layer such as Znx Sny Oz was better than those with a TiO2 -coated CdS, and the degradation mechanism was different, suggesting that the stability of a CIGS-based photocathode can be improved by careful design of the structure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app