Add like
Add dislike
Add to saved papers

An approach to forecast human cancer by profiling microRNA expressions from NGS data.

BMC Cancer 2017 January 26
BACKGROUND: microRNAs are single-stranded non-coding RNA sequences of 18 - 24 nucleotides in length. They play an important role in post-transcriptional regulation of gene expression. Evidences of microRNA acting as promoter/suppressor of several diseases including cancer are being unveiled. Recent studies have shown that microRNAs are differentially expressed in disease states when compared with that of normal states. Profiling of microRNA is a good measure to estimate the differences in expression levels, which can be further utilized to understand the progression of any associated disease.

METHODS: Machine learning techniques, when applied to microRNA expression values obtained from NGS data, could be utilized for the development of effective disease prediction system. This paper discusses an approach for microRNA expression profiling, its normalization and a Support Vector based machine learning technique to develop a Cancer Prediction System. Presently, the system has been trained with data samples of hepatocellular carcinoma, carcinomas of the bladder and lung cancer. microRNAs related to specific types of cancer were used to build the classifier.

RESULTS: When the system is trained and tested with 10 fold cross validation, the prediction accuracy obtained is 97.56% for lung cancer, 97.82% for hepatocellular carcinoma and 95.0% for carcinomas of the bladder. The system is further validated with separate test sets, which show accuracies higher than 90%. A ranking based on differential expression marks the relative significance of each microRNA in the prediction process.

CONCLUSIONS: Results from experiments proved that microRNA expression profiling is an effective mechanism for disease identification, provided sufficiently large database is available.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app