Add like
Add dislike
Add to saved papers

Exosome-Based Delivery of miR-124 in a Huntington's Disease Model.

OBJECTIVE: Huntington's disease (HD) is a genetic neurodegenerative disease that is caused by abnormal CAG expansion. Altered microRNA (miRNA) expression also causes abnormal gene regulation in this neurodegenerative disease. The delivery of abnormally downregulated miRNAs might restore normal gene regulation and have a therapeutic effect.

METHODS: We developed an exosome-based delivery method to treat this neurodegenerative disease. miR-124, one of the key miRNAs that is repressed in HD, was stably overexpressed in a stable cell line. Exosomes were then harvested from these cells using an optimized protocol. The exosomes (Exo-124) exhibited a high level of miR-124 expression and were taken up by recipient cells.

RESULTS: When Exo-124 was injected into the striatum of R6/2 transgenic HD mice, expression of the target gene, RE1-Silencing Transcription Factor, was reduced. However, Exo-124 treatment did not produce significant behavioral improvement.

CONCLUSION: This study serves as a proof of concept for exosome-based delivery of miRNA in neurodegenerative diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app