Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Identification of ecdysteroidogenic enzyme genes and their expression during pupal diapause in the cabbage armyworm, Mamestra brassicae.

In this study, we identified ecdysteroidogenic enzymes in the cabbage armyworm, Mamestra brassicae, and demonstrated reduced expression of these genes during diapause. Some insects employ a temporary developmental arrest, diapause, to survive in severe environments. The titres of the moulting hormone ecdysteroid were reduced in diapause pupae of M. brassicae; therefore, ecdysteroidogenesis might be suppressed by a diapause-specific mechanism. To clarify expression changes of ecdysteroidogenic enzyme genes during diapause in M. brassicae, we first identified the genes for seven ecdysteroidogenic enzymes: Neverland, Non-molting glossy (Nm-g), CYP307A1 (Spook), CYP306A1 (Phantom), CYP302A1 (Disembodied), CYP315A1 (Shadow) and CYP314A1 (Shade). Enzymatic assays using heterologous expression in Drosophila Schneider 2 (S2) cells and analysis of mRNA distribution indicated that the identified genes were ecdysteroidogenic enzymes of M. brassicae. Expression levels of these ecdysteroidogenic enzyme genes were compared between prothoracic glands in different pupal stages throughout diapause. Immediately after pupation, diapause-destined pupae showed similar expression levels of ecdysteroidogenic enzyme genes to those of nondiapause pupae. All of these genes showed reduced gene expression after diapause initiation. Expression was immediately increased in diapause-destined pupae at the postdiapause quiescence phase. These results indicate that reduced expression of ecdysteroidogenic enzyme genes suppresses ecdysteroidogenesis and maintains developmental arrest during diapause.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app