Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Tensile Reinforcement of Silk Films by the Addition of Telechelic-Type Polyalanine.

Biomacromolecules 2017 March 14
An appropriate modification technique for silk materials is needed to effectively improve their physical properties for specific applications. A telechelic-type polyalanine (T-polyA) was synthesized by papain-catalyzed polymerization as a novel reinforcing agent for silk materials. A silk fibroin obtained from Bombyx mori was homogeneously doped with T-polyA, and casting a solution of silk fibroin and T-polyA in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) resulted in a robust and transparent film. Tensile deformation studies of the silk composite film containing T-polyA with prestretching revealed that the tensile strength and toughness were enhanced relative to those of a silk-only film. To determine the capability of T-polyA to reinforce the tensile property of silk films, the secondary structure in the silk composite film was characterized by wide-angle X-ray diffraction (WAXD) analysis. Antiparallel β-sheet structures of T-polyA and GAGAGS motifs of silk fibroin formed independently in the prestretched composite film. In addition, measuring the tensile deformation and performing WAXD analysis simultaneously demonstrated that the β-sheet structures of both T-polyA and the silk fibroin were aligned along the stretching direction and that T-polyA had no significant effect on the final morphology of the silk crystal domains. The silk film was toughened by the addition of T-polyA because of the generation of the T-polyA β-sheet in the amorphous region of the composite film. This work provides novel insight into the design and development of tough silk materials with controlled and aligned β-sheet structures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app